
026 INFRASTRUCTURE

Stop wrestling
with ARM Templates,
work on your Biceps
Creating resources in the Azure cloud can be done in many ways. If you've ever used Azure,

you most certainly made a resource using the Portal experience at portal.azure.com.
Besides this portal, you can also use PowerShell or the Azure CLI. When you want to manage
your infrastructure from an application, you can work with an SDK and, for example, create a

resource using C#. Finally, there are also options to manage resources using templates.
ARM templates have been around for quite a while, and now you have a new option: Bicep!

Bicep aims to make managing your infrastructure in a declarative way much easier than it was
with ARM templates. ARM templates are written in JSON and are therefor harder to write, read,

and much larger in size. It is also quite hard to break up ARM templates into multiple modules to
create maintainable and reusable templates. Bicep is a domain-specific language (DSL) aiming

to solve all of these problems for us!

Author Erwin Staal

All the different options you have to manage infrastructure

in Azure have one thing in common: they use the Azure

Resource Manager underneath. The below diagram shows

the various options in relation to the Azure Resource Manager.

The first row in the diagram shows you the various options we

just mentioned; the portal, Azure CLI, PowerShell, SDKs, and

templates. On the second row, you see the Azure Resource

Manager. It's the service in Azure that allows you to deploy

and manage resources. The actual work of creating resources

Portal

Azure Resource Manager

Resource

Resource Provider Resource Provider Resource Provider

Resource Resource Resource Resource Resource

Azure CLI PowerShell SDK Templates

The Azure Resource Manager

2

Bicep

 State of the art software engineering

XPRT. Magazine N°

12/2022

027

is delegated to a resource provider. There is, for example, a

resource provider for everything around virtual machines and

another one for all things related to Web Apps.

Except for the portal, all these options allow you to create

and manage your infrastructure using Infrastructure as Code

practices in a descriptive model. As with source code for

your applications, you get the same benefits as versioning,

auditability, traceability, and repeatability by storing it in source

control and deploying it using a deployment pipeline.

Creating your first resource
Now that you know a bit about where to place Bicep in the

Azure-provisioning landscape, let's dive in by creating a simple

resource using Bicep. Before you can start, you need to install

a few tools:

 Install Visual Studio Code (https://code.visualstudio.com/

download)

 Install the Bicep extension for Visual Studio: 'ms-azuretools.

vscode-bicep' (https://marketplace.visualstudio.com/items?

itemName=ms-azuretools.vscode-bicep)

 Install the Azure CLI (https://docs.microsoft.com/en-us/cli/

azure/install-azure-cli)

For example, we will create a storage account in Azure using

Bicep. Open Visual Studio Code and create a new file called

"storageAccount.bicep". Within that file, start typing 'stor'.

You will see the extension will immediately begin helping you

write the templates by presenting you with a few snippets.

stor

Hit Enter and the snippet will be inserted. It looks like the follo-

wing example:

resource storageaccount 'Microsoft.Storage/
storageAccounts@2021-02-01' = {
 name: 'name'
 location: location
 kind: 'StorageV2'
 sku: {
 name: 'Premium_LRS'
 }
}

The snippet starts with the keyword resource, indicating you

want to create a resource. Next is the deployment's name,

followed by the resource type and its version. Within the

curly braces, you find the details of the resource like its name,

location, and SKU.

While you haven't touched your mouse or keyboard yet,

you will see that the editor selected the deployment name,

allowing you to change that value. When you hit the tab key,

you will automatically move to each property you can edit.

Again, a nice benefit of the extension. Notice how the

extension also lists available options for the properties with

a fixed set of options, like the 'kind' on the storage account.

That saves you from having to look them up and make typing

errors.

resource storageaccount 'Microsoft.Storage/

storageAccounts@2021-02-01' = {
 name: 'mystorageaccount'
 location: resourceGroup().location
 kind: 'StorageV2'
 sku: {
 name: 'Standard_LRS'
 }
}

When you’ve edited the properties, your storage resource

looks like this example:

resource stg 'Microsoft.Storage/storageAccounts@2021-04-01' = {
 name: 'mystorageaccount'
 location: resourceGroup().location
 kind: 'StorageV2'
 sku: {
 name: 'Standard_LRS'
 }
}

The name of the storage account is currently hardcoded.

That is not ideal since you want to use this template for

multiple environments, such as test and production.

The Microsoft naming convention recommends making

the name reflect that. In Bicep, you can use a parameter to

provide values, like the environment, at runtime.

Define a parameter as follows:

param env string = 'test'

You start with the keyword 'param' followed by its name.

Next, you define its type, in this example, a string.

Other options are an integer, bool, array, or object.

Optionally, you can set a default value like 'test' in the

example above. The same can be done for the location

property of the storage account, or you can use a function

like in the previous example to get the location from the

resource group in which it lives.

In addition to parameters, we can use variables for values that

you want to reuse across your templates but are not provided

at runtime. Creating a variable that holds the name of the

storage account looks like this:

var storageAccountName = 'stordemo${env}'

Notice how you can use string interpolation to combine

'stordemo' with the 'env' parameter into the variable.

The result of using both parameters and a variable is shown

below:

param env string = 'test'
param location string = 'westeurope'

var storageAccountName = 'stordemo${env}'

https://code.visualstudio.com/download
https://code.visualstudio.com/download
https://marketplace.visualstudio.com/items?itemName=ms-azuretools.vscode-bicep
https://marketplace.visualstudio.com/items?itemName=ms-azuretools.vscode-bicep
https://docs.microsoft.com/en-us/cli/azure/install-azure-cli
https://docs.microsoft.com/en-us/cli/azure/install-azure-cli

028 INFRASTRUCTURE

resource stg 'Microsoft.Storage/storageAccounts@2021-04-01' = {
 name: storageAccountName
 location: location
 kind: 'StorageV2'
 sku: {
 name: 'Standard_LRS'
 }
}

Another interesting feature that you can add is the use of the

output keyword. That allows you to, for example, return the

URL of the blob endpoint on the storage account. Defining an

output looks like this:

output blobEndpoint string = stg.properties.
primaryEndpoints.blob0

Defining an output is similar to defining a parameter.

The output keyword is used, and it's given a name:

'blobEndpoint'. You specify its type and then provide a value.

Notice how you can use the deployment's name and the

dot notation to get the properties of a resource.

Deployment
Now that you have written the first resource, let's deploy to

Azure. The funny thing is that Azure itself doesn't know Bicep

at all. Azure understands good old ARM templates, so your

Bicep template will be transpiled into an ARM template and

deployed to Azure. You can do that transpilation yourself, but

the Azure CLI also supports deploying a bicep file directly and

will do the transpilation for you. Let's do the transpilation to

see the result using the Azure CLI. Run:

az bicep build -f storageAccount.bicep

The output is the following ARM template:

{
 "$schema": "https://schema.management.azure.com/
schemas/2019-04-01/deploymentTemplate.json#",
 "contentVersion": "1.0.0.0",
 "metadata": {
 "_generator": {
 "name": "bicep",
 "version": "0.4.1008.15138",
 "templateHash": "7691361711088743744"
 }
 },
 "parameters": {
 "env": {
 "type": "string",
 "defaultValue": "tst"
 },
 "location": {
 "type": "string",
 "defaultValue": "westeurope"
 }
 },
 "functions": [],

 "variables": {
 "storageAccountName": "[format('stordemo{0}',

parameters('env'))]"

 },

 "resources": [

 {
 "type": "Microsoft.Storage/storageAccounts",
 "apiVersion": "2021-04-01",
 "name": "[variables('storageAccountName')]",

 "location": "[parameters('location')]",
 "kind": "StorageV2",
 "sku": {
 "name": "Standard_LRS"
 }
 }
],
 "outputs": {
 "blobEndpoint": {
 "type": "string",
 "value": "[reference(resourceId('Microsoft.

Storage/storageAccounts',
variables('storageAccountName'))).
primaryEndpoints.blob]"

 }
 }
}

You immediately see that the ARM template is almost three

times as large as the bicep equivalent! You will probably also

agree that the bicep version is much more readable than the

JSON in this ARM template. Those are just a few of the

benefits of using Bicep over ARM tempaltes.

We will use the Azure CLI to do the deployment. You first

need to login and select the correct subscription using the

following commands:

az login

az account set -s <subscription id or name>

As every resource in Azure lives in a resource group, you first

need to create that. Later, we will see how to create one with

Bicep. For now, use the Azure CLI:

az group create -l westeurope -n rg-bicepdemo-test

Now that your resource group is ready, you can deploy the

template using the command below:

az deployment group create /-resource-group rg-bicepdemo-
test /-template-file storageAccount.bicep

When you do not provide values for the parameters, the

defaults in the template will be used. The following command

shows how to provide a parameter while deploying the

template. Passing parameters allows you to reuse the template

and target multiple environments.

az deployment group create /-resource-group
rg-bicepdemo-test \
 /-template-file storageAccount.bicep \
 /-parameters '{ \"env\": { \"value\": \"prod\" } }'

Now open the Azure portal and verify the storage account

has been created.

Modularize your Bicep template
If you continue to add resources to the file we just created,

it will get bigger and bigger. Eventually, it will become harder

to read and maintain, and the template will get harder and

harder to reuse. Luckily, Bicep has the concept of modules.

Modules allow you to break up your template into smaller,

reusable parts. The template you've just created is an excellent

example of what can be in a module. Now let's create the

029

XPRT. Magazine N°

12/2022

resource group you created manually using the Azure CLI

using Bicep and see how we can use the storage account

template as a module. Start by creating a new file called

"main.bicep", and add the following snippet to the "main.bicep"

to create the resource group:

param env string = 'test'
param location string = 'westeurope'

resource stg 'Microsoft.Storage/storageAccounts@2021-04-01' = {
 name: 'rg-bicepdemo-$(env)'
 location: location
}

The above snippet creates a Resource Group of which the

deployment is called 'rg'. Now you've done that, you will see

that VS Code will show an error on the above new resource.

By default, a bicep template is deployed at the scope of a

resource group. As you may know, in Azure, there are different

levels at which we can deploy resources. We call these the

deployment scopes. At the root, you have your Azure

Tenant. That can contain one or more Management Groups.

These can contain one or more subscriptions, and each

subscription can contain one or more resource groups.

Finally, the resource groups contain the actual resources

like Virtual Machines, a Web App or Storage Account.

This hierarchy allows you to group and manage your resources

in a structured way and is shown in the image below.

You get the above error since you cannot create a resource

group within a resource group; the deployment scope is

wrong. A resource group needs to be deployed at the

subscription scope, so you need to add the following line

to the top of the "main.bicep":
targetScope = 'subscription'

Azure Active Directory (Tenant)

Management Group

Subscription

Resource Group

030 INFRASTRUCTURE

The error should disappear. To use the storage account file

as a module, you use the 'module' keyword instead of the

'resource' keyword. You give it a name like you do when using

the 'resource' keyword. Instead of specifying a type, you now

reference the just created module using its path. Below the

resource group, start typing 'module stg <space>', and VS

Code should show you all available modules:

module stg

Select the storageAccount.bicep. Type '= <space>' and then

select the 'required-properties' option in the drop-down.

module stg 'storageAccount.bicep' =

The generated snippet looks like this:

module stg 'storageAccount.bicep' = {
 scope:
 name:
}

On the first line in that module, you find 'scope'. That is where

you define to what scope this module should be deployed.

Remember that the "main.bicep" template targets the

subscription scope, but a storage account can only be

deployed within a resource group. This scope property allows

you to set it. You simply do that by using the name of the

resource group you declared earlier like so:

module stg 'storageAccount.bicep' = {
 scope: rg
 name: 'storage'
}

Remember that the storage account also has two parameters.

They were not added when you created the module using the

'required-properties' since they have a default value. You can

pass a value to them by specifying params on the module like

so:

module stg 'storageAccount.bicep' = {
 scope: rg
 name: 'storage'
 params: {
 env: 'prod'
 }
}

Deploying this template is slightly different from when you

deployed storageAccount.bicep previously Since we now

target the subscription scope, you need to specify that in the

command. The command now becomes:

az deployment sub create /-template-file main.bicep
-l westeurope

Notice that instead of g̀roup̀ you now use s̀ub` to indicate

the different deployment scope. When you run the command,

it should succeed, and the result in Azure should be the same

since the resource group and storage account already exist.

In this article, you've learned how easy it is to get started with

Bicep to create and deploy your first resource. You've also

learned how to create a module to craft small, reusable, and

maintainable Bicep templates. If you want to know more about

sharing these modules within your organization, then make

sure to find the article on 'Shift left using blessed templates

with Bicep' by Erick Segaar elsewhere in this magazine.

Erwin Staal
Azure Architect

xpirit.com/erwin

Want to know more about Infrastructure as
Code on Azure?
Erwin, together with two friends, wrote a book on it!

It discusses ARM templates and, of course, Bicep.

It shows how to deploy these templates using Azure

DevOps or GitHub Actions, talks about sharing templates

across the organization, how to govern your Azure

environment using Azure Policy, and much more. Find out

more and buy the book at https://www.manning.com/

books/azure-infrastructure-as-code

https://xpirit.com/team/erwin-staal/
https://www.github.com/staal-it
https://www.linkedin.com/in/erwinstaal
https://www.twitter.com/erwin_staal
https://www.manning.com/books/azure-infrastructure-as-code
https://www.manning.com/books/azure-infrastructure-as-code

