
XPRT. Magazine N°

12/2022

059

Embrace chaos to
achieve stability
Imagine this. You have built a website to sell your company’s products. After a few months of
hard labor, the application finally goes live. Of course, the application has been thoroughly tested.
It all started with Unit Tests. First on the local machine and after the engineers filed a Pull Request
a whole series of checks were executed. Each quality gate passed successfully and a fully
automated pipeline successfully deployed the application on a cloud environment. But you went
that extra mile. Performing load tests, security tests, pen tests and smoke tests. And finally, to
make sure you have the least downtime possible when the sh*t hits the fan, you created and
implemented failover scenarios and disaster recovery plans. Now you are all set. Let the sales
begin!

Author René van Osnabrugge

And then… everything goes black. The datacenter is down,

and the failover you carefully set up does not work as

expected. And, after a few hours of stress, when the data­

center has recovered, the way back does not go well.

This scenario is not something that only exists in a fantasy

world. It is a real scenario. Things happen and you need to be

prepared. And the truth is, you cannot prepare for everything.

When you operate a business in the cloud (but also in your

own datacenters) you need to embrace the fact that things

can go wrong. The question is, how well can you deal with it.

Chaos Engineering
When Netflix moved to the cloud in 2011, they wanted to

address the fact they lacked sufficient resiliency tests in

production. To make sure they were prepared for unexpected

failures in production, they created a tool called Chaos

Monkey. This tool caused outages and breakdowns on

random servers. By testing these "unexpected" scenarios

they could validate and learn if their infrastructure could

deal with, and recover from, failure in an elegant manner.

Without meaning to, Netflix introduced a whole new practice.

Chaos Engineering.

Breaking servers was one way to test this, but quickly other

scenarios became relevant. Slow networks, unreliable

messaging, corrupt data etc. Not much later, other tech

companies, especially those running large scale and

complex landscapes in the cloud, also adopted similar

practices. This practice, where the mindset shifts from

expecting stable production systems to expecting chaos

in production, is called Chaos Engineering.

Chaos Engineering is a concept that uses hypotheses and

experiments to validate the expected behavior of complex

systems. This way you can grow confidence in the reliability

and resilience of these systems.

Why Chaos Engineering?
Chaos Engineering lets you compare what you think will

happen to what actually happens in your systems. You literally

"break stuff " to learn how to build more resilient systems.

Therefore you can look at Chaos Engineering as a test

practice. But there are important differences. First of all

Chaos Engineering, when done right, is also performed on

production systems. Secondly, with Chaos Engineering you

don’t really test for failure. You test beforehand, and by

conducting Chaos experiments you try to prove the

assumptions you made in your test scenarios and architecture

are actually valid and working.

With the rising complexity of our infrastructure, due to s

oftware architectures like microservices, but also the

"connected" systems we build nowadays, the traditional

QA approach is not sufficient anymore. There is simply too

much that can go wrong, and with the dynamic nature of the

software and infrastructure stack this can be different every

day. With Chaos Engineering it all starts with a hypothesis.

And based on the hypothesis, you define and conduct

experiments to prove that your hypotheses is correct.

Here is an example hypothesis, "When the external payment

provider I use is unavailable, my customers get the option to

pay afterwards and continue their checkout process".

Appropriate Continuity 

060  DEVELOPMENT

The 5 principles of Chaos engineering
To get started with chaos engineering you can use the

following simple plan. I will explain these steps in detail in

the rest of this article.

Before we get started you should understand that Chaos

Engineering is not something you can do on a rainy Sunday

afternoon. Chaos Engineering needs careful planning and

impact analysis. You need to understand what happens if your

hypothesis is wrong. You also need to understand “the blast

radius”. In other words, what breaks if things do not work out

as you planned. And linked to that, are there people available

during the execution of the experiment, so they can jump in

when things go not as planned?

The website [Principles of Chaos Engineering]1 describes

5 principles you should consider when doing Chaos

Engineering:

1.	� Build a hypothesis around steady state behavior

This means you should focus on what is visible for the

customer. Not the internal working of a system or things

you can only influence when you know the inner workings.

Focus on the steady state and the metrics that belong to

a steady state.

2.	� Vary real world events

Prioritize events based on expected frequency. Consider

everything that can influence the system steady state.

For example, disk failure, servers dying, or network outages.

3.	� Run experiments in production

Simulation and sampling is great, but running on real world

data and metrics is better. Try to run on production

whenever possible. Of course, this requires careful planning

and involvement of people. Usually this is done on

so-called "game days", where people are ready for the

"game". When you start with Chaos Engineering, it might

be a better idea to validate your hypotheses on non-

production systems. Start there, to get an idea what to

expect and what you should measure. Production intro­

duces an extra level of complexity and control because

you need to make sure your users are not impacted.

4.	� Automate experiments to run continuously

As with almost everything in DevOps, automation is key.

Running experiments and gathering metrics is time

intensive and hard work. Make sure you automate

experiments so you can run them repeatedly.

5.	� Minimize blast radius

Experimenting in production has the potential to cause

unnecessary customer pain. So be mindful of that.

Make sure there is room in your error budget or prepare

for some issues. There must be an allowance for negative

impact but keep the fallout of experiments minimal.

How does it work?
Chaos engineering involves going through a number of

steps. These steps are followed for each new experiment.

As I described before, it is important to plan this carefully.

Because many of the chaos experiments are executed on

production systems, you can easily break things that have

customer impact. Often companies choose to organize

so-called Game days. On these days people know that chaos

experiments will be executed and can be on standby or be

extra careful to monitor the systems for strange behavior.

1	� PRINCIPLES OF CHAOS ENGINEERING - Principles of chaos engineering

https://principlesofchaos.org

XPRT. Magazine N°

12/2022

061

When running chaos experiments you can follow this

structure:

Write a hypothesis

With chaos engineering, it starts with a hypothesis. This is

important! It is not a test. For example, the hypothesis

"The payment service should respond" is not a valid

hypothesis. This is something you should already have tackled

in your test suite. Chaos Engineering is about making sure your

application becomes more resilient. You should already be

quite certain your system can deal with unknown situations

and your hypothesis should build on that. For example.

"When the payment service goes down, we offer our

customers an alternative way of payment". Think about the

user. How can the user continue its journey with the least

impact . A good example that Netflix uses when the login

functionality stops working, is they offer services for free,

without logging in. That way, users can still utilize the service.

Measure baseline behavior

Before you run any experiment, you should be aware of the

baseline behavior. How does your system normally respond?

In other words, can you recognize anomalies? You should have

a good idea of the baseline because otherwise you may draw

the wrong conclusions. For example, if you run an experiment

to prove your response times will stay the same as "usual", you

should know what usual is. Maybe this varies throughout the

day due to traffic on your site. If you run an experiment in that

timeframe, you might see strange things that are caused by

factors other than your experiment.

When you think about creating the baseline, you should think

of metrics and user metrics that are important to look at in the

light of the experiment and hypothesis you are working on.

Not everything is relevant at the same time.

Conduct experiment

When you created the hypothesis and baseline, you can start

running an experiment. Running an experiment is causing the

behavior that could disproof your hypothesis. Slowing down

traffic, bringing a service down, shutting down or killing

containers etc. There are several tools that can help you in

running Chaos experiments. Many of them are targeted at

virtual machines or a Kubernetes cluster and cause havoc on

the infrastructure layer. Of course, you can also write your

own scripts or tools to help you with your experiments.

Some examples of tools you can use are:

	Gremlin2

	Chaos Toolkit3

	Chaos Mesh4

	�Azure Chaos Studio5

Monitor the resulting behavior

When you conduct the experiment, it is time to look at the

metrics again. What do you see? Do you see the expected

behavior of your system? Is the hypothesis valid? When you

see the system does not behave as expected, try to gather as

much information as possible why this is the case. Also, make

sure you keep the blast radius and real user impact in focus.

Document the process and observations

After the experiment is complete, you have either proved

or disproved your hypothesis. Make sure you document the

process you executed, especially when you found that your

hypotheses failed. Make sure you document your learnings.

Consider performing a blameless learning review to find out

what happened and document the learning review for future

use.

Identify fixes and apply them

When you find your hypotheses did not work, apply the

necessary fixes and automate the experiment. Make sure

you can run the experiment multiple times, maybe even on

a schedule. Systems change, and environments change, and

you need to validate your hypotheses over and over again.

How can I get started with Chaos Engineering?
Getting started with Chaos Engineering is something you can

do any time, as long as you take the user impact and blast

radius into account. A common way to introduce chaos is to

deliberately inject faults that cause system components to fail.

The goal of Chaos Engineering is to create a more resilient and

reliable application. With Chaos Engineering practices, you

need to test and validate your application is indeed more

resilient. Architectural patterns like circuit breakers, failover,

and retry can help to make your application more robust.

Then, after you have built your application, you need to

observe, monitor, respond to, and improve your system's

reliability under adverse circumstances. For example, taking

dependencies offline (stopping API apps, shutting down VMs,

etc.), restricting access (enabling firewall rules, changing

connection strings, etc.), or forcing failover (database level,

Front Door, etc.), is a good way to validate that the application

can handle faults gracefully.

Write hypthesis

Measure baseline

Conduct Experiment

Monitor behavior

Document
observations

Apply fixes

2	� https://www.gremlin.com/
3	� https://chaostoolkit.org
4	� https://chaos-mesh.org/
5	� https://azure.microsoft.com/en-us/services/chaos-studio/

https://www.gremlin.com/
https://chaostoolkit.org
https://chaos-mesh.org/
https://azure.microsoft.com/en-us/services/chaos-studio/

062  DEVELOPMENT

It is important to start small. Start by defining a hypothesis and a very small experiment and go through the different steps that

I described above. To define your first hypothesis, you should look at things you expect to go right but that you never actually

look at. A good source of inspiration is a keynote of Adrian Cockroft6. In this keynote, he explains some basic things that go

wrong. For your convenience, I have listed a number of these categories and things that can go wrong:

Infrastructure Failures

Device Failures Disk, power supply, cabling, circuit board, firmware

CPU failures Cache corruption, Logic bugs

Datacenter failures Power, Connectivity, cooling, fire, flood, wind, earthquake

Internet Failures DNS, ISP, internet routes

Software stack Failures

Time Bombs Counter wrap round, memory leak

Date bombs Leap year, leap second, epoch

End of unix time

Expiration Certificates timing out

Revocation License or account shut down by supplier

Exploit Security failures e.g. Heartbleed

Language bugs Compiler, interpreter

Runtime bugs JVM, Docker, Linux, Hypervisor

Protocol problems Latency dependent or poor error recovery

Application Failures

Time bombs (in application code) Counter wrap around, memory leak

Date bombs (on application code) Leap year, leap second, epoch, Y2K

Content bomb Data dependent failures

Configuration Wrong config or bad syntax

Versioning Incompatible versions

Cascading failures Error handling bugs

Cascading overload Excessive logging, lock contention, hysteresis

Retry storms Too many retries, work amplification, bad timeout strategy

Operations failures

Poor capacity planning

Inadequate incident management

Failure to initiate incident

Unable to access monitoring dashboards

Insufficient observability of systems

Incorrect corrective actions

René van Osnabrugge
ALM, DevOps, Continuous Delivery,
Initiator and Inspirator

xpirit.com/rene

6	� https://www.youtube.com/watch?v=cefJd2v037U

Summary
Chaos Engineering is fairly new to many people. Although it

has existed for several years, it is not yet embraced by the

broad audience. That is a shame because chaos engineering

can really help build more resilient systems. By defining

hypotheses and conducting experiments to prove your

hypotheses you can test your system to deal with unexpected

situations. There are many small experiments you can execute

on your system, so getting started should be very simple.

However, always take the potential user impact and blast

radius into account and carefully plan your game day.  

https://xpirit.com/team/rene-van-osnabrugge/
https://www.github.com/renevanosnabrugge
https://www.linkedin.com/in/renevanosnabrugge
https://twitter.com/renevo
https://www.youtube.com/watch?v=cefJd2v037U

