
025

XPRT. Magazine N°

11/2021

Tyranny of the default
Every demo on GitHub Actions shows how easy it is to get

started: add a text file with some actions in it and you are good

to go. Unfortunately, this is highly insecure! To understand

why, you need to know what the attack vectors of your

workflow are and how you can guard yourself against them.

Let’s start with an introduction to GitHub Actions first.

By storing the dotnetcore.yml file in the right location, you

have added a new workflow that can be triggered on

events. There are a lot of events available, from the push event

in this example(1), to comments on an issue and closing of a

Pull Request.

GitHub Actions:
running them
securely
GitHub Actions1 are a powerful way of creating a pipeline to act on events in GitHub.
By creating a workflow file you run actions on code updates to build your application,
automate triaging tasks from issues, and loads of other helpful uses.

Author Rob Bos

Make your own Octocat: https://myoctocat.com/

1 https://github.com/features/actions

https://myoctocat.com/
https://github.com/features/actions

026 SECURITY

In the jobs(2) section you can create one

or more jobs that will run on a specific

runner that executes the steps(3) in

the sequential order within the file.

In this example the repository is

checked out(3) first, then a version of

the .NET Core tooling is installed(4) and

in the last step the .NET Core project is

built using the tools(5).

Know your GitHub Actions
When using GitHub Actions it is

important to understand what the

actions you use are doing. You can use

any action by leveraging the setup from

GitHub: the action identifier is the

organization or username that is hosting

the action, and the name of the

repository it is in.

In this example you can find both

actions in the ‘docker’ organization in

their own repositories. Adding the

action path to https://github.com/

straight to the action repo.

-name: Login to DockerHub

 uses: docker/login-action

 with:

 username: ${{ secrets.DOCKERHUB_

USERNAME }}

 password: ${{ secrets.DOCKERHUB_

TOKEN }}

- name: Build and push

 uses: docker/build-push-action

 with:

 push: true

 tags: user/app:latest

Having a valid action.yml in the

repository makes it useable for every

workflow. Using the action like this will

ensure that the workflows will always

download the latest available version

of the repository and execute the code

that is in it. This is also the greatest

downside of actions: the default is

already insecure! Anyone can create an

action like this and there is no process

that will check the action you are

using for quality or security issues.

Even limiting the actions people can use

in your organization, to only the actions

listed on the marketplace is insecure:

there is no process that checks whether

your action is doing malicious things.

The source of every action is public,

which also means that you can look at

the action repository and verify what

it is doing when it runs. You can check

whether it is sending your environment

variables over to their own API for

example, or logging your OS information

together with your IP-address.

What are the risks?
It is wonderful to able to use actions

that someone else already spent time

and effort to create, potentially saving

you a lot of time. However, this also

adds some risk to your repository, the

application you are creating and the

setup around it. To get some under-

standing of the risk we need to look at

the results of an attack on your work-

flows.

A malicious actor can wreak havoc on

your application or its environment in

three different ways:

1. data theft

2. data integrity breaches

3. availability

Data theft
By working their way into your work-

flows, people could get access to the

code in your repository, but potentially

also to the environment your workflow

is running in. That environment could

be set up to have API keys available for

accessing services you need to build or

deploy your application, or have

certificates installed for code signing.

It could even have access to an

account on your cloud platform that

has administrative rights and could get

access to data or delete infrastructure

there. Limiting the access for the runner

that executes your workflow to the bare

minimum is key in preventing against

data theft.

When you run your workflow on hosted

runners2, it is GitHub’s responsibility to

keep them up to date with the latest

OS and tool updates. To make sure the

attack surface on them is as small as

possible, they will create a completely

new environment for each run and

clean up the environment after it is no

longer used.

If you run the workflows on private

runners3, taking all these security

measures is up to you. Keep in mind that

you are taking that responsibility when

you install a private runner. You need to

secure the OS, limit access the account

the workflow is running under to only

the things it needs access to (so do not

assign network admin permissions to

it!). You also need to keep the tools on

that machine up to date with all the

security patches.

Data integrity breaches
If a malicious actor has a way to get

into your workflow or execution

environment, they can also inject

malicious code into your application.

Most workflows create an artifact to

deploy into an environment and

store the artifacts in the pipeline

environment. A possibility is that the

attacker injects something into the

artifact and the deployment will then

deploy the malicious code for you!

The recent Solorigate4 attack is a

prime example of this type of attack.

Adding one malicious assembly before

the artifact was uploaded (and avoiding

a lot of different detection methods)

was the central point the attack was

executing.

Other examples of data integrity

breaches are poisoning your

dependency cache: there are a lot of

blogposts5 available explaining that you

need to verify the dependencies you are

using with, for example SHA512 hashes

of the commit6 to make sure you are not

unknowingly pulling in a newer version

of the dependency when you build your

application.

Something similar happens with typo

squatting attacks7: can you spot the

difference between using ‘npm install

crossenv’ and ‘npm install cross-env’?

An easy mistake to make, but if the first

one is a malicious copy of the package

2 https://docs.github.com/en/actions/using-github-hosted-runners/about-github-hosted-runners
3 https://docs.github.com/en/actions/hosting-your-own-runners
4 http://xpir.it/Solorigate
5 https://xpirit.com/99-of-code-isnt-yours/
6 https://w3c.github.io/webappsec-subresource-integrity/
7 https://snyk.io/blog/typosquatting-attacks/

https://github.com/
https://docs.github.com/en/actions/using-github-hosted-runners/about-github-hosted-runners
https://docs.github.com/en/actions/hosting-your-own-runners
http://xpir.it/Solorigate
https://xpirit.com/99-of-code-isnt-yours/
https://w3c.github.io/webappsec-subresource-integrity/
https://snyk.io/blog/typosquatting-attacks/

027

XPRT. Magazine N°

11/2021

you need, with some bonus code

that executes at runtime, you might

be compromised before you know it!

These attacks are now getting even

more sophisticated by finding out the

names of internal packages you use

and host a malicious version on the

public repository site. Most package

tools have a default to check the public

hosted endpoints first. If the package is

not found there, it will try the same on

internal endpoints. Take a good look at

those configurations you are using.

Availability
An attack vector that seems less likely is

injecting something into your workflow

that will cause the workflow to stop

running. These days, most DevOps

teams are very dependent on their

pipelines to push code to production,

and they have a hard time getting

updates out if their pipelines are not

working anymore. To limit what

engineers have access to, everything is

locked down and only a service account

has access to production. What if

your application is down, or worse:

vulnerable to an attack? What if

someone can trigger your workflow

to be unable to execute, right at that

moment? Does your DevOps team

have a ‘break glass’ option8 to fix the

vulnerability without their pipelines?

Attack vectors
By pulling in the action from the

internet you are executing its code in

your environment: this can be a hosted

runner on GitHub’s infrastructure, or

your own runner in your own cloud

environment.

The code in the action can do multiple

things: it can send out your data, code

or environment setup (SSH Keys, locally

stored certificates, etc.) to an endpoint

of their own and exfiltrate data that

way. They can also try to get access to

your environment or your GitHub setup:

either the code in the repository itself

or even try to get administrative access

to the complete repository. They could

pull in extra dependencies in your

code, add other actions to your

workflow, or even misuse your action

runs with Bitcoin miners for their own

gain.

There are multiple ways to try and get

in. Every now and again GitHub has

‘Capture The Flag’ (CTF) events where

they invite the community to try out a

repository and gain access. From those

events they learn a lot about their setup

and ways to break the security around

the repository. A basic example of an

attack vector is the use of sending in a

Pull Request that alters the workflow

files itself by adding in a malicious

action. More sophisticated attacks

examples are adding JavaScript in the

issue comment that is being picked

up by the workflow and not handled

securely: the JavaScript is then executed

by logging it to the output for example

(helpful to see them in the logs) which

in turn enables the attacker to break out

of the action environment itself and run

a process on the runner environment.

With that setup someone can create a

new Pull Request for the repository that

added the next step of the attack by

writing code back into the repository.

From the CTF events we learn the new

ways to get access, and GitHub can try

to prevent those types of attack.

8 https://docs.microsoft.com/en-us/azure/active-directory/roles/security-emergency-access?WT.mc_id=AZ-MVP-5003719

https://docs.microsoft.com/en-us/azure/active-directory/roles/security-emergency-access?WT.mc_id=AZ-MVP-5003719

028 SECURITY

Securing the actions you run
There are several measures you can take to secure your

actions. Just using the latest version of the action is not a

good idea: new code could have nasty side-effects like

introducing new vulnerabilities, as we have seen in the

previous paragraphs. The action repository might even be

taken over by a new maintainer with ill intent and still

compromise your setup. That is why running the action

(as displayed in every demo!) like this example is a bad idea:

- name: Login to DockerHub

 uses: docker/login-action

 with:

 username: ${{ secrets.DOCKERHUB_USERNAME }}

 password: ${{ secrets.DOCKERHUB_TOKEN }}

- name: Build and push

 uses: docker/build-push-action

 with:

 push: true

 tags: user/app:latest

Option 1: Version tags

You can add the version number of the action to the end of

the configuration, but there is no way to verify if it is still the

same code: the tag can be reused with new code changes in

it, so adding this does not add real security to it.

uses docker/login-action@v1

Option 2: At least start here

Start by verifying the actions you are running by looking into

the action’s repository. Have a sanity check on the code in the

repository and use the commit SHA from GitHub to add that at

the end of your action configuration:

name: Login to DockerHub

 uses: docker/login-action@

e2302b10ccc2c798f917336fe81ce41ea8dea0fd

 with:

 username: ${{ secrets.DOCKERHUB_USERNAME }}

 password: ${{ secrets.DOCKERHUB_TOKEN }}

- name: Build and push

 uses: docker/build-push-action@

0ec1157bb54f3e4676c823ef3497b53135ed39de

 with:

 push: true

 tags: user/app:latest

The commit SHA is immutable: if the code in the repository

changes, the SHA will be different. This is the only secure way

to know for sure that the code you are executing is the code

you have checked yourself and that you have approved the

risks that come from using it.

029

Staying up to date
Now that we are using the actions as securely as we can

(by checking what it is actually doing and making sure no

unseen changes can be added), the next question needs to

be answered: how do we still get updates?

Since there is no update feed on the marketplace, or a blog

that can be followed, I created a Twitter bot9 that will regularly

check for new or updated actions and will tweet them out.

Checking the used action versions in your workflow files

and updating them automatically can be done by using

Dependabot10: it will scan your workflow files on a schedule

and create a Pull Request for each updated action. This will

give you a chance to manually verify the incoming changes

and then accept the pull request.

Option 3: Forking the action repository

The ultimate security setup I have found is forking the action

repository to a specific organization for it. This way of working

was suggested previously in documentation, but has not

gained momentum.

Forking the repository gives you full control over the actions

as well as their updates. It also provides a clear audit trail of

the actions and secures you from actions being pulled by the

maintainer. Additionally, you have a backup if the action gets

deleted / renamed / moved to a different repository by the

publisher. Remember the availability issues that can occur?

This helps preventing that as well. You can now secure your

other organizations (or separate repositories) to only allow

actions being run from the forked repositories.

This is also an ideal strategy for enterprise organizations.

You can create a specific actions-organization in which you

fork all the actions you need. Then lock down the normal

organization(s) everyone is using to only allow actions from

the actions-organization. The setup would look like this:

Enable your DevOps engineers!
Do not lock out you DevOps engineers: it is part of the

DevOps way of working to let them take control over the tools

they use. Add an organization in which people can pull in new

actions to test with and validate their workflows, so they can

still use new actions that you have not forked yet. They take

ownership of the actions they want to use and fork the actions

themselves!

That way they have full autonomy and will not be waiting

for someone’s approval before they can test new actions or

updates.

XPRT. Magazine N°

11/2021

9 https://twitter.com/githubactions
10 https://docs.github.com/en/github/administering-a-repository/keeping-your-actions-up-to-date-with-dependabot

marketplace

marketplace

actions-organization

test-actions-
organization

actions-
organization

Only allow actions
from actions-
organzation

engineering01-
organization

engineering02-
organization

engineering03-
organization

Only allow actions
from test-actions-

organzation

test-organization

engineering01-organization

engineering02-organization

engineering03-organization

Only allow actions from
actions-organzation

https://twitter.com/githubactions
https://docs.github.com/en/github/administering-a-repository/keeping-your-actions-up-to-date-with-dependabot

Keeping your forks up to date
Now that you have secured your organization and made sure

you are not blocking your DevOps engineers by empowering

them to take control over the actions, you need a way to

update your forks (all of them). To make this as easy and still

secure as possible, I created the GitHub Fork Updater

repository11: a specific repository that has everything in it you

need. Fork it, add some configuration so that it can update

all repositories in that organization, and you are good to go!

The update works as follows:

1. On a schedule, check all repositories in the organization of

the fork using a workflow.

2. If there are updates, create an issue in the fork-updater

repository.

3. With the default GitHub notification setup, your engineers

will get notified of new issues.

4. They can check the issue and do the security check on the

incoming changes using a special link in the issue.

5. By adding a label on the issue, they will indicate that they

have validated the incoming changes and that they want to

pull them into the forked repository.

6. A workflow is triggered on the labeling of the issue and the

fork will be updated.

7. The issue is closed.

Summary
Using GitHub Actions from the market place is not secure by

default: there are no real checks on the code they are

executing, and it is up to you to verify whether the actions are

safe to use.

Empower your DevOps engineers to take ownership of the

actions by forking the repositories and doing the due

diligence on them to make sure they will not send out your

data to some unknown third party. This can be done by setting

up a secured configuration with additional organizations in

your GitHub account and forking all the actions you want to

use there. Keeping your forks up to date can be automated as

much as you can by leveraging the GitHub Fork Updater to

stay on top of changes. Always verify the incoming

changes!

030 SECURITY

Rob Bos
Consultant

xpirit.com/rob

11 https://github.com/rajbos/github-fork-updater

https://xpirit.com/team/rob-bos/
https://www.github.com/rajbos
https://www.linkedin.com/in/bosrob
https://www.twitter.com/robbos81
https://github.com/rajbos/github-fork-updater

