
XPRT. Magazine N°

11/2021

011

For close to five decades, Kongsberg has been a provider of

simulators. Anticipating the digital shift, Kongsberg embraced

the advancing technology and, in collaboration with Xpirit,

pioneered the first simulator service based on its acclaimed

engine room simulator platform. This service was made

publicly available in March 2020, months earlier than its

planned release date, motivated by the closing of maritime

academies in the wake of the spread of the COVID-19 virus.

By the end of the year, we had delivered a staggering thirty

thousand simulations sessions to students globally.

An ambitious plan
Motivated by this unconditional success, already in May 2020,

Kongsberg accelerated its digitalization effort and started the

cloudification of its navigation simulation platform, with the

ambitious goal of offering the first public service, a RADAR

simulation service, within the year. On the last day of

November, we launched it. This story is about parts of the

technology we created to deliver the first and probably the

most advanced navigation simulator in the cloud.

We had learned a lot from bringing Kongsberg's Engine and

Cargo simulator to the cloud, which we wrote about in our

previous article in XPRT. Magazine #10. Could we also get

their Navigation simulator to the cloud and have a working

prototype in about eight weeks? Luckily, we could leverage all

the work we had already done in the years before, but it wasn't

a trivial task either!

First challenge: from (up to) 200 computers to
1 docker container
Kongsberg's simulator platform for navigation and offshore is

called Spirit. It is a highly distributed system, with a simulator

server at its core, simulating 'the world' and all hydrodynamics

(motion of water and the forces acting on objects in the

water). Spirit allows Kongsberg to build simulators ranging

from a single desktop computer to full mission ship bridges

consisting of hundreds of computers working together to

drive instruments and provide real-time 3D visual imagery.

Never waste a
good crisis
How COVID-19 drove innovation
in maritime education
Rapid advances in new technology are changing the way seafarers learn. Advanced simulation
is known to be one of the most effective applied training tools. They have been used in the
training and education of seafarers for many years but often limited due to relatively high
acquisition and operation costs. Democratization of simulation training is now happening,
which will allow many more students to get access to high-quality simulation tools at an
affordable price. Cloud technology and the increasing internet availability across the globe
enable this transformation. The ongoing COVID-19 pandemic further accelerates it. We can
expect improved quality of education, but this also could prove to be an essential tool in the
digitalization transformation that the maritime industry faces.

Authors Gullik Jensen (Product Director for Digital Services at Kongsberg), Roy Cornelissen (Consultant @ Xpirit, working with

Kongsberg since 2017) and Sander Aernouts (Consultant @ Xpirit, working with Kongsberg since 2017)

012  INNOVATION

Source: https://www.kongsberg.com/digital/solutions/
maritime-simulation/integrated-team-training/

Spirit has years of investment in its platform. It is entirely

Windows-based, and most of its components have some form

of GUI, even the server components. However, in a cloud

environment there is not much use for a GUI. A cloud-native

system should run headless on a server. Sure, you can install

them on a VM and serve the UI over Remote Desktop, but that

is an old-fashioned solution and a costly one.

We already had an entire platform and ecosystem for running

simulators as containers in a Kubernetes cluster named K-Sim

Connect. It handles everything for scheduling simulations,

managing exercises and students in a SaaS offering. Spirit also

had to land in this environment. We knew we were in for a

challenge to containerize a system that wasn't designed with

containerization in mind.

There are roughly two approaches for this:

1.	� Rewrite from scratch as a headless system, using .NET

Core/.NET 5 and Docker, and run it as Linux containers, or:

2.	� Adapt the existing system step by step and make it run in

the cloud.

Many architects and developers would shout: “rewrite from

scratch; this system is not cloud-native!”. It would probably

be the cheapest solution from an operational perspective in

the long run, but it would have a very long time to market,

tremendous development cost, not to mention disinvestment

in an already successful and proven system. We had a very

short time window to be successful, so while we were scaling

up with our engine room simulators in production, we started

working on bringing the Radar Navigation Trainer to the cloud.

Our existing platform had also proven that we could run

Windows containers in the cloud just fine. Of course, Windows

containers are big, and Windows nodes are more expensive to

run, but it fully supports Windows-based software, including

more “exotic” things like Win32 code and registry access.

We knew we needed this for Spirit as well.

Our approach was somewhat trial-and-error at first because

we needed to find out the obstacles we had to overcome.

We took the Spirit installer and created a Docker file that

installs it. Obstacle number one was that we needed to

make the installer run headless. That was an easy fix in the

InstallShield definition, by giving it a silent option.

Together with the Spirit architects, we looked at how we

could make all the components involved in the simulation

run headless.

This diagram depicts the critical components that participate

in a Radar simulation. All server components (light blue boxes)

had a GUI that displays their states and provides manual

controls like stopping, starting and pausing. The first thing the

Spirit team did for us was changing these components to run

without any GUI in a Docker container.

The green components are full-blown GUI applications

(mostly WPF). They all play an essential role in the system.

Integrated
Training

Possibilities

K-SIM
Crane

K-SIM
Offshore

K-SIM
Navigation

K-SIM
Engine

K-SIM
Dynamic Positioning

Instructor Station

Real Time Communication Bus

Student Station

Shared
Memory

Radar Display

Resource Manager
Server

Exercise Server

Web Server

3. Start Student Stations(s) according
to exercise configuration

1. Request
to load an
exercise

5. Serve web
based instruments
+ SignalR 2-way
communication

2. Start server and
load exercise

Simulation
“the world”4. Launch Radar

display

https://www.kongsberg.com/digital/solutions/maritime-simulation/integrated-team-training/
https://www.kongsberg.com/digital/solutions/maritime-simulation/integrated-team-training/

013

The Instructor Station is used to create exercises, add vessels,

set up conditions like weather and the sailing area, assign

students and start the exercise. Based on the configuration in

the exercise and the simulator, the Resource Manager starts

several other components.

We needed to automate the process of loading an exercise

and starting the simulation without user interaction. Since we

don't need all of the Instructor Station features in the cloud,

only the ability to load an exercise, the Spirit team delivered a

console application that did precisely that. This way, we could

bootstrap the system via the command line.

The Student Station was trickier. It has the vital task of running

the instruments that the students interact with. Instruments

have a GUI but also hold logic to interact with the server

components. The Radar instrument, in particular, has a part

that generates sweeps based on the input data. A radar sweep

is a full 360 degree turn of the radar beam, generating one

picture. On each step in this turn, the radar generates a scan

by shooting the beam in that direction.

A separate executable called the Radar Display reads scans

from shared memory and draws them on the screen. So, there

were several things to address here:

	� remove the GUI of the instruments while still running the

logic;

	� run Shared Memory in a docker container (could we do

that?);

	� replace the Radar Display application with something that

could generate images without a GUI.

We had already learned that you could run quite a bit of "old"

Windows mechanics in a Windows container (provided that

you run a Windows Server Core image). COM, registry access,

Win32, all of that works. We quickly verified that Shared

Memory, which also is an old construct, worked as well.

This meant that we could reuse the existing components that

generate radar sweeps. We just needed a new way to host

them since they ran in the Student Station GUI application.

Specifically, for the Docker container, we created a Headless

Student Station. This is a .NET Console Application that loads

the Spirit framework components that run the instrument

logic but skips the presentation layer. One tricky part here

was that the Student Station is a Windows application driven

by the Windows message pump. Some components in the

Student Station rely on having this message pump available.

Also, the Radar's COM components require an STA thread

(Single-Threaded Apartment) to run. We created a class that

sets up an invisible Window that drives the message pump

and sets up a Dispatcher that guarantees the Single-Threaded

Apartment. It was a quick trick to make things work, but this is

typically something you'd want to revisit later to make the

application more container-friendly. However, it requires a

more significant change in the architecture.

In the container, we launch this Headless Student Station

instead of the regular one.

You can run multiple processes in one container. This is what

we do: all of the Spirit components run inside this single

container, one container per student.

The Bootstrapper component that replaces the Instructor

Station plays an important role here. It is the root process that

determines the lifetime of the container. Furthermore, it

communicates with the K-Sim Connect platform to track the

status and progress of the simulation session. Recently, we

added an automatic assessment of the student based on data

from the simulator, which our web portal displays in real-time.

Second challenge: from WPF to a web-native UI
This brings us to the next elephant in the room: How to deal

with the Student UI? Our first-generation Engine Room

simulators still have a local GUI application. It works by virtue

of a relatively simple client installation and a pure Client/

XPRT. Magazine N°

11/2021

Bootstrapper

Real Time Communication Bus

Headless Student
Station

Shared
Memory

TBD

Headless Resource
Manager Server

Headless Exercise
Server

Headless Web Server

3. Start Student Stations(s) according to
exercise configuration

1. Request to
load an exercise

Container 5. Serve web
based instruments +
SignalR 2-way commu-
nication

2. Start server and
load exercise

Simulation
“the world”

4. Generate Radar
images

014  INNOVATION

Server topology. We could bring the product to market fast,

even though it's somewhat of a compromise to require a

local client.

The Spirit platform is more complex, with its real-time

communication bus. We knew that installing the Student

Station on a client PC was not an option because of its

large footprint, and we wanted to push the platform to be

web-native anyway.

Over the past years, Kongsberg had invested in an extension

framework for Spirit. An important driver for this was the

ability to innovate on top of the platform without changing,

testing, and releasing the entire platform itself every time.

This multi-speed architecture of the extension framework

significantly accelerated our efforts as well.

One of the tenets in the extension framework was that new

instruments based on this framework would be served and

rendered in a web UI. This is where the Spirit Web Server

comes into play. It is an integral part of our solution.

Normally these web components are hosted by the Student

Station GUI application as individual panels with an embedded

browser. The radar was going to be a web-based instrument as

well, based on the extension framework. The Spirit Web Server

would serve it, which we exposed in the Docker container, via

a Kubernetes ingress. Each student gets his own (temporary)

environment with a unique URL:
<session id>.<cluster-region>.elearning.ksimconnect.com

Kubernetes Ingress rules take care of the magic of routing

traffic to the correct container.

The final piece of the puzzle was the replacement of the

Student Station’s “chrome”, which handles the display and

arrangement of the instrument panels. This application,

named PanoramaWeb, was written specifically for our move

to the web as a pure native web app, using Vue.js as its basis.

Albert Brand's article in this magazine provides a more detailed

background of the technology behind the web app. We will

continue to extend PanoramaWeb and, as it matures, it will be

the future Student Station.

Now that we had a way to display instruments over the web,

we could build the foundation of the Radar instrument.

Buttons, status indicators and other user interaction like

drawing range markers or bearing lines are all handled on the

client side. The extension framework includes a SignalR

connection with the server, which allows us to communicate

state and updates between the browser and the container.

Replacing the radar display
An essential part of a radar instrument is the radar video,

the well-known, often circular, view that displays the radar

sweeps.

As the first diagram illustrates, the existing Radar Display is also

a GUI application. It handles the drawing of the radar video, as

well as all the user input. We had already dealt with the user

input via the web panel. What was left was the radar video.

The data feed for the sweeps was already available in the

shared memory block. The Radar Generator component

constantly writes new values for each scan, much like a real

radar would. We extracted the logic from the existing Radar

Display GUI and created a new headless component to

house that logic. It's called ScanConverter. Apart from

PanoramaWeb, this is one of the few parts we rewrote for our

cloud scenario. ScanConverter takes the data from Shared

Memory and produces an image. We do this roughly 25 times

per second, which is an acceptable frame rate.

XPRT. Magazine N°

11/2021

015

Third challenge: near-real-time communication on the web

Next, we needed a way to send these radar video frames to

the browser.

We started by looking at how streaming services such as

YouTube or Netflix solved streaming video to clients at an

incredible scale. But there is an important difference between

streaming content such as videos and streaming a live radar

video feed. When dealing with videos, users need to see them

from start to finish without skipping parts of the video.

Even when live streaming on YouTube, for example, the view

does not have to be near real-time. For us it is more important

that the user sees what is happening right now on the radar

than that the user views the video from start to finish.

We looked at streaming technologies such as Dynamic

Adaptive Streaming over HTTP (DASH or MPEG-DASH) or

HTTP Live Streaming (HLS). Still, each of those prioritizes

delivering a smooth (live) stream to a large number of users

over providing a video stream as close to real-time as

possible to a single user. We then looked at a different type

of video streaming, focused on near real-time video

conferencing: WebRTC. WebRTC is a protocol for real-time

voice and video communication on the web. It focuses on

peer-to-peer communication, and an important feature is

that it is natively supported by browsers these days.

When using WebRTC, we need a so-called signaling server.

The clients use this central server to discover each other when

initially setting up the WebRTC connection. After the initial

bootstrapping, the signaling server is no longer needed, and

the WebRTC clients communicate directly with each other

peer-to-peer. WebRTC has several mechanisms to enable such

direct communication across different networks separated by

the internet. When this fails, clients can use a TURN (Traversal

Using Relays around NAT) relay as a fallback. With a TURN

relay, clients no longer communicate peer-to-peer, but they

use this central relay to communicate. The TURN relay is

an essential component for us because we often need it

in restricted environments such as corporate or school

networks. These types of networks typically don't allow any

of the mechanism that WebRTC uses to set up a peer-to-peer

connection.

The peer connection in a WebRTC session can contain

multiple video and audio streams that are synchronized.

This is important in video conferencing because when you

see people talk, you want to hear the sound that matches the

movement of that person's mouth. In a simulation, we also

want to synchronize multiple video streams such as a radar

video, a 3D view and audio streams to make sure what the

user sees and hears matches the current state of the simulated

world.

WebRTC seemed to fit our needs perfectly, but our main

challenge was to set up a WebRTC session between a Docker

container and a web browser. While WebRTC is natively

supported in browsers, using it on the side of the server in a

C# .NET application was more complicated. We had to

implement support for WebRTC into our C# application, just

like the browser vendors did for their browsers. The source

code for the WebRTC libraries is made public by Google, but

its native C and C++ need to be integrated into your own

application. After some digging, we found that Microsoft

already had a project on GitHub that was aimed at supporting

WebRTC in the HoloLens applications, and the library

produced by this project allowed us to integrate WebRTC into

our C# application with relative ease.

Since each simulator container is a self-contained application

with its unique endpoint, we opted to put both the signaling

server and the server-side peer in the same process in the

Docker container: the Spirit Web Server.

The browser connects to a SignalR hub (the signaling server)

that is exposed on the Docker container and exchanges the

required messages to set up a WebRTC connection with the

simulator, running in the same container. Once the connection

is established, the simulator starts streaming the radar video,

generated by the ScanConverter component, over WebRTC

to the browser.
Signaling server

Signaling server

Peer 1

Peer 1

Browser

Peer 2

WebRTC

SignalR

Docker container

Peer 2

VideoTrack #1

VideoTrack #2

VideoTrack #3

MediaSream

PeerConnection

Simulator

Signal server

016  INNOVATION

The world after COVID-19
2020 started quiet for us, and we expected to steadily grow

our customer base and start working on bringing the next

simulator to the cloud. COVID-19 fast-tracked our plans and

ambitions. Our product owner asked us "whether we were up

for a challenge," and the team boldly accepted. And now, one

year later, we have clusters running in multiple regions, with

users across the globe using our simulators in the cloud.

But we are far from done, we merely started to unlock the

navigation simulator's potential in the cloud, and we are

already looking ahead to bring more and more features

besides radar to the cloud.

As with the Engine Room simulator, this project shows that

you don't need a complete rewrite of your system to

capitalize on it in the cloud. We were able to bring it to

market fast with targeted changes, but we realize we still

have work to do. But by just doing it, we have learned a lot

more about where and how to focus our efforts to optimize

the Spirit platform for the cloud than starting with a

complete redesign. Behind the scenes, teams within

Kongsberg are now working hard on making the simulator

leaner and more container-friendly. New features are already

being developed "cloud-first".

The launch of the RADAR service is one more important step

in the democratization of maritime simulation. One hurdle at

the time, we are shaping the future of maritime simulation and

doing it to the benefit of the user and for the benefit of a safer

and greener world. And on the way there we create some epic

shit technology.  

Roy Cornelissen
Distributed architecture, mobile
development, creative

xpirit.com/roy

Sander Aernouts
Microsoft application lifecycle
management (ALM)

xpirit.com/sander

Gullik Anthon Jensen
Lead digital transformation
Maritime Simulation, Kongsberg
Digital

https://xpirit.com/xpiriter/roy-cornelissen/
https://xpirit.com/xpiriter/sander-aernouts/
https://www.github.com/roycornelissen
https://www.linkedin.com/in/roycornelissennl
https://www.twitter.com/roycornelissen
https://www.github.com/sanderaernouts
https://www.linkedin.com/in/sanderaernouts
https://www.twitter.com/SanderAernouts
https://www.linkedin.com/in/gullikjensen

