
006 INNOVATION

Upgrading user
interfaces for

the future
Kongsberg is a company in the maritime industry – it is heavily regulated and in general,

it does not spend too much time on 'how things look' - as long as the solution is functional.
In the past, large legacy desktop systems have been built for Kongsberg’s maritime simulation

and training division. These systems use WPF (or older!) to show and control its state.

Author Albert Brand

Recently Kongsberg started to deliver a cloud-based training

platform for maritime students, in which a view on the ship’s

bridge with all instruments is accessible from a browser.

Together with the transformation to a web platform there

was a great opportunity to rethink how to compose the user

interface with reusable elements, how these user interfaces

are connected to the simulation services, and how to achieve

a maintainable system that may be compiled into something

entirely different in a couple of years.

This article will discuss some details of this transformation to

the web. If you are interested in the ‘cloud side’, make sure

to read the article by Roy Cornelissen and Sander Aernouts in

this magazine.

Rethinking the design
Kongsberg brought in a design agency to create a fresh new

look for their entire simulation product suite called K-Sim.

This covers:

 the simulated ship controls called instruments;

 the virtual ship’s bridge where these instruments are shown

to the user called PanoramaWeb;

 the portal to start a simulation, see assessment results,

and buy licenses for specific instruments called Connect.

Initially there was a focus on the instrument design.

These were crafted as a replica of the physical world (which is

called skeuomorphic in experts terms). However, after several

iterations it became clear that in some cases, a real life design

is hard to manipulate using a display or touch screen.

Also, creating components from these designs was deemed

to be pretty complicated (although we managed to deliver

some!).

After a number of iterations, the agency took these learnings

and they made the distinction between replicas, abstractions

and digital screens. When a physical replica is too

constraining, abstractions are used to present a design that is

recognizable but does not exist in real life. For example, the

heading repeater instrument has traits of a compass rose that

add a relation to its functionality. The third distinct design type

is digital screens. Today, some instruments on a ship already

use a touch screen instead of a custom hardware panel.

It makes sense to give a similar representation to a student.

Creating composable UI elements
I joined the K-Sim Connect team in April 2020 as a Xebia

frontend architect. One of the goals was to coach the current

team in building modern web frontends. Of course they also

wanted me to help build some of the user interfaces, fast!

That seemed like a job that suited my skills pretty well.

Some teams already created web versions of instruments

(before they hired a design agency). The instruments were

built using vanilla JavaScript with CSS and did only use some

XPRT. Magazine N°

11/2021

really low-level libraries such as jQuery to help render the

output. The build quality of the components was lacking in

several areas: minimal tests, no proper separation of concerns,

no reusable parts and of course the visual design was pretty

old-school as well.

Together with one of the simulation software architects of

Kongsberg I discussed several topics:

 we should create small components to compose larger ones;

 the components should use a modern web standard to

expose and isolate itself, and allow for data ingestion and

event publishing;

 we shouldn’t build everything ourselves but use the best

libraries out there to achieve it.

The architect was also thinking about a domain-specific

language that expresses how the user interface is laid out in a

platform-independent manner. He liked what he heard about

Web Components1 as it is the official set of web standards for

creating components that encapsulate their presentation and

behavior.

So we went forward and started to create a Web Component

library based on the initial designs, with many composable

elements such as buttons, areas and text elements. But what

does composability mean in the context of a user interface?

To give an example, let’s say that you want to show a big

button with a flashing text on it. One way of building such a

component is by creating a new one from scratch with exactly

that behavior. However, such a solution does not scale: you’re

probably copy-pasting parts of a similar button, and you need

to repeat that process over and over again for new variants of

the button. An improved way would be to add parameters to

an existing button, such as “size” and “flashing”. However, that

would still not scale very well, as your component would

keep on growing with all kinds of variations which get harder

and harder to reason about, let alone write tests for all

permutations.

A better way to solve this is by creating an extensible

component, which allows for injecting other components

that only bother about their own concerns. For instance, the

flashing button could be created by the following structure:

<StyledButton>
 <Flashing colors=”[red,white]”>
 <SimpleText size=”big”>
 Emergency!
 </SimpleText>
 <Flashing>
<StyledButton>

And this is exactly what you can do with web components.

It offers you custom elements that provide a ‘slot’ mechanism

to pass in other elements, making your components

composable from smaller parts.

Libraries? Yes please.
While implementing the first components it became clear

quickly that the Web Component standard is a little bare-

boned. This is actually often the case for web standards in

general: the standard committee is pressed to agree on a

generic solution, and they often choose low-level APIs.

It is up to the web community to pick them up and use them

as a foundation for modern libraries.

Many of the existing frameworks such as React, Vue.js and

Angular offer a way to perform a special build that wraps

components as custom elements. However, this comes at the

cost of having to ship relatively large libraries, just to draw a

single component. So we looked at alternative frameworks

and libraries to create web components while adopting a

modern approach, but without too much extra overhead.

The choice quickly became clear: we wanted to follow the

recommendations from Open Web Components2, a collective

of web components enthusiasts. These recommendations

provide a powerful and battle-tested setup for creating and

sharing web components. It recommends the LitElement3

library for building web components, the successor of the

Polymer project, which pushed the Web Component standard

initially.

Presenting the ship’s bridge in a browser
While building the shared component library, work was

underway to build a new version of the PanoramaWeb web

application to show the overview of instruments to the user

in a modern way. As PanoramaWeb is a single page app that

shows the ‘chrome’ around instruments, it was not necessary

to build this as a web component. Instead, I opted to use Vue.

js, as it an easy to pick up framework for building large

component-oriented user interfaces.

PanoramaWeb initially retrieves the instruments it needs to

show via a panel API. When the instruments are loaded, the

app has some high-level control over the simulator. It can

start and stop the loaded exercise and show the simulated

time, which is presented in the top bar. This communication is

done over a bidirectional stream of events that is exposed via a

Websocket connection. In addition, each instrument connects

to its own server-side view model instance using SignalR.

And if that is not sufficient, each instrument can communicate

with whatever service it wants, and with any protocol that is

required for it. You can read about how the radar instrument

uses a WebRTC stream for bringing the radar display to life in

the article by Roy and Sander in this magazine.

007

1 https://developer.mozilla.org/en-US/docs/Web/Web_Components
2 https://open-wc.org
3 https://lit-element.polymer-project.org

https://developer.mozilla.org/en-US/docs/Web/Web_Components
https://open-wc.org
https://lit-element.polymer-project.org

008 INNOVATION

One of the challenges was to build a view to show and

interact with the various instruments, while also being able

to resize them and reorder them using drag and drop. As the

instruments are built as separate web pages, it made most

sense to use plain iframes to show the contents. iframes have

a long history, as they have been one of the first browser

features. They allow you to load and show two or more

different pages of content in a single view, which means that

they are a good candidate to ‘stitch’ multiple instruments

together in a unified view.

Of course, there are other ways of combining multiple

elements on a single page. You can choose to create large

components that are then loaded on a single page. You could

even use custom elements as a boundary for communicating

between components. However, you need to make sure that

these components have separate styles and dependencies,

otherwise one component could influence another

component in unexpected ways. And given the output of

the in-house tool (which you’ll read about shortly), I opted

to go for iframes.

It took some sweat and tears, but PanoramaWeb started to

shape up nicely after some time.

Dragging and dropping iframes that are holding those

instruments did become a hassle at some point. iframes are

quite limited; partly because of security concerns (you can

load a page from a different domain so a browser needs to

be very careful in sharing information between both), partly

due to standardization reasons (it’s just an element that shows

a page in another page and that’s it). And for some historical

reason, if you move an iframe element to another parent

element (which I implemented as a naïve first approach), the

iframe contents will be reloaded. Even though this was not

really a functional problem (the page is initially synced with

its server view model), I really wanted to fix this bad user

experience issue.

After investigating it became clear that if you want to ensure

that iframes don’t reload when being dropped in a different

place, you should not move them at all in the DOM. Instead,

I went for another strategy: when an instrument is visually

dropped at a certain position, an InstrumentPlaceholder

component is drawn. This component constantly determines

its visual size and position on the screen (using the modern

ResizeObserver and MutationObserver web APIs) and updates

the internal state of PanoramaWeb. Thanks to Vue’s built-in

reactivity, it was a breeze to let the component that holds

the actual iframe to pick up this change and position itself on

the placeholder location. This allows for iframes to be placed

anywhere in the component tree. Nice!

PanoramaWeb

postMessage

SignalR

Websocket REST

.NET server

Webpage

Contol interface Panel API

Instrument

Viewmodel

Instrument

Viewmodel

Simulator

Instrument

Viewmodel

XPRT. Magazine N°

11/2021

009

▼ <App>
 ▼ <AppInit>
 ▼ <TabViews>
 <InstrumentPanel>
 ▼ <GridContainer>
 <GridInit>
 ▼ <PageView>
 <TopBar>
 ▼ <Grid>
 ▼ <AspectRatioContainer>
 <InstrumentPlaceholder key='1'>
 <InstrumentPlaceholder key='2'>
 <InstrumentPlaceholder key='3'>
 <InstrumentPlaceholder key='4'>
 <InstrumentPlaceholder key='5'>
 <InstrumentPlaceholder key='6'>
 <SidePanelContainer>
 ▼ <InstrumentPanels>
 ▼ <InstrumentPanel>
 ▼ <Drag>
 <InstrumentIframe>
 <InstrumentPanel>
 <InstrumentPanel>
 <InstrumentPanel>
 <InstrumentPanel>
 <InstrumentPanel>
 <InstrumentPanel>
 <TabView>

The tool that ties everything together
While I was having a go at the PanoramaWeb application,

the software architect was happily working on a tool that

soon would become the official Kongsberg-endorsed way of

creating user interfaces for instruments. Mind you, Kongsberg

already created hundreds of different simulated instruments,

and maintainability is a big concern. Many of these instruments

differ widely in style, technology stacks, architecture, layers,

initialization and communication. Only giving developers

guidelines on how to build user interfaces was not enough to

streamline and standardize this process.

A domain-specific language called ‘Blueprint’ was designed

and it allows you to specify how your user interface is built

up using components, binding them to certain inputs from

the view model (even with complex expressions), and listen

to output of these components. The tool, which is written in

.NET Core, can load libraries of components and compile a

Blueprint file to an actual web page (including CSS and

JS dependencies) that is ready to be served as part of the

extension for the web server application.

fragment

fragment

fragment

fragment

fragment

010 INNOVATION

In theory this tool could be used to output something

completely different: a native desktop user interface, or a

virtual or augmented reality variant. The possibilities are

pretty much endless, however that is a chapter that still

needs to be written.

We proposed numerous enhancements such as file includes

with parameterization that found its way into the tool. At some

point I even created a Visual Studio Code extension to syntax

highlight the Blueprint file contents. My fellow teammates who

wrote a lot of Blueprint code were very happy with that, as

code readability is improved a lot this way. And of course, you

get pretty bored looking at grey code all day long…

autopilot.blueprint

angle $(Heading)
towards-angle $(HeadingOrder)
allow-drag $(InstrumentPower) and $(InCommand)

heading
 group
 offset 0, -20

 label-text
 text 'HEADING'
 font-size $(FontSize)

 group
 offset 7.5, 4

 readout-text
 text $(HeadingAsString)
 horizontal-align 'right'
 font-size $(FontSizeXL)
 status 'highlight'

 readout-text
 offset 1, -2
 text 'o'
 font-size 3.5
 status 'highlight'

heading command
 group
 offset 0, 17.5

 include "autopilot-field.blueprint-part"
 $(Disabled) = not $(InCommand)
 $(Label) = 'HEADING COMMAND'
 $(FieldOffsetX) = -1.5
 $(Flashing) = $(HeadingOrderFlashing) and $(BlinkSync)
 $(EditableText) = $(HeadingOrderReadout)
 $(EnterPushed) = $(EnterHeadingOrder)

 label-text
 offset 0.5, 2.5
 text 'o'
 font-size 2.5

mode selectors
 group
 offset -37, -17.5

In conclusion
We Xebians have been trained to aim for the sky and see

problems as opportunities, not as roadblocks. However, other

developers might not have that mindset. Learning a new

library such as LitElement or a tool as Blueprint takes time, and

you need to constantly remind yourself to take a step back,

keep explaining when something is unclear, and in the end let

others learn by doing, and stop ‘holding their hand’.

Luckily, the approach that we kickstarted is being picked up,

and more and more teams are now investing in learning and

embracing that modern stack. There will always be growing

pains, but teams are pretty happy so far.

So there you have it, a ‘blueprint’ of the future of Kongsberg

user interfaces. I honestly believe that thanks to the chosen

modern standards such as Web Components and the effort

that is going into the Blueprint tool, Kongsberg does not have

to invest in rebuilding their user interfaces every two years.

And the future looks bright as well. The adoption of the

cloud e-learning environment is rising and demand for more

teaching scenarios is clearly visible. Who knows which

products will see the light of day and set a high bar for what

you can do with an ‘ordinary’ browser and the cloud?

Albert Brand
Core Development lead from
Xebia Software Development

https://github.com/AlbertBrand
https://www.linkedin.com/in/albertbrand

