
018  INNOVATION

Azure container
Apps: The future
of Microservices

in Azure?
Looking at the current state of software development, we can conclude a few things:
1.  Containers are here to stay. Over the years, containerized workloads have become more
and more popular, and we see most mature software companies benefit using containers
from the cloud to the edge.
2.  The DevOps movement is still growing and growing; the mantra "You build it, you run it"
really works for building better software. DevOps teams must take into account the
whole picture of building applications, from features to costs, from application monitoring
and underlying infrastructure instead of only being responsible for building features
 for their applications.

Authors Geert van der Cruijsen and Bas van de Sande

Combining these two trends in the market explains why

technologies such as Serverless became popular.

Development teams must focus on everything related to

building functional, resilient, and robust applications while

taking costs into account. Serverless helps in reducing the

amount of moving parts you must manage as a development

team.

Kubernetes is another technology that took the world by

storm over the past several years. Containerized workloads are

popular, and Kubernetes gives you a vast number of options

to deploy and run these workloads, either in the cloud or

the edge, with flexibility between all clouds and self-hosted

options.

Kubernetes also offers great tools for autoscaling, recovery

of failing containers, zero downtime deployments, and

controlling the network within the applications with service

meshes. Because of that, all cloud providers have invested

heavily to create ways to run Kubernetes on their clouds.

That is why Kubernetes is becoming the standard infra

structure for modern cloud native applications.

There are also some downsides to Kubernetes.

Managing Kubernetes itself is quite complex and although

the public cloud providers are all investing in making running

applications easier and easier, Kubernetes itself is still far

from a PaaS or serverless service that needs little to no

configuration for production workloads. In a world where

we want to have T-shaped development teams that can build

and run their applications, also having those teams know

everything about Kubernetes can be quite a burden.

Microsoft acknowledged this and realized most companies

do not need all the features Kubernetes has to offer. Their aim

when building Azure Container Apps was to create an

opinionated way of deploying containerized workloads to

Azure that brings several features that Kubernetes could

  State of the art software engineering

XPRT. Magazine N°

12/2022

019

provide without having to manage a cluster: autoscaling, zero

downtime deployments and traffic shaping with control over

ingress.

Introducing Azure Container Apps (ACA)
As mentioned, Microsoft aimed for creating an optimized way

of deploying and running containerized workloads when

building Azure Container Apps. Their focus was to build a

solution that makes it easier for development teams to build

Microservice architecture-based applications and deploy

those to Azure. The idea being, giving development teams

the features they really want from Kubernetes without having

to deal with Kubernetes itself.

Azure Container Apps behind the scenes is still based on

Kubernetes but as a developer you should not care about it.

It has been set up for you, so it feels (and costs) like a

serverless way of deploying containerized workloads to Azure,

focusing on Cloud native applications and Microservice

architectures.

What features does Azure Container Apps have to offer?

What are the features that development teams want when

building and hosting microservices? ACA offers a way to

deploy and scale a set of containers that make up an

application while making sure all components can

communicate with each other, scale based on load, are

accessible from the outside, and can be deployed without

downtime.

Looking at the components that define an Azure Container

Apps solution, you always start with an "Azure Container Apps

Environment". The Environment is a secure boundary around

several "Container Apps" and makes it possible for these

different container apps to communicate, much like an App

Service Environment when using Azure App Services.

Within the Azure Container App Environment, you can

create Azure Container Apps. Each app represents a single

deployable unit which can contain one or more related

containers. You could compare an Azure Container App to

a deployment in Kubernetes. For each app, you can create a

number of "revisions". Revisions are a way to deploy multiple

versions of an app where you have the option to send the

traffic to certain versions. Between revisions the ACA can be

composed totally different: think of using different images,

having additional containers etc.

These features are the basic concepts to run API's and

frontends, but ACA also has features to host workers or back-

ground processes that are part of the microservice application.

ACA has Kubernetes Event-driven Autoscaling (KEDA) built in.

KEDA can scale background workers based on scaling rules ,

such as number of requests or the number of messages in a

queue. These rules can be set up for each Container App

individually, allowing them to scale based on their own needs.

Deploying an application to Azure Container apps

Azure Container Apps are built upon Kubernetes technologies,

technologies which are hidden beneath the surface while

deploying a new Container App. To get a better understanding

of the technologies involved and the heavy lifting that is

done, here is what actually happens when a Container App is

deployed.

Containers can be deployed in Kubernetes in multiple ways.

One way to rollout containers is by using deployments.

A Kubernetes deployment can be defined as a yaml

declaration describing which containers, storage volumes,

and ports should be created, as well as the number of replicas.

An example of a Kubernetes deployment which deploys three

instances of the Nginx web server is shown below:

apiVersion: apps/v1
kind: Deployment
metadata:
 name: nginx-deployment
 labels:
 app: nginx
spec:
 replicas: 3
 selector:
 matchLabels:
 app: nginx
 template:
 metadata:
 labels:
 app: nginx
 spec:
 containers:
 - name: nginx
 image: nginx:1.14.2
 ports:
 - containerPort: 80

Each time the definition of the yaml changes and is

reapplied on the cluster, a new revision is made and the

running deployment is updated gradually to the new revision.

One of the advantages is the revision history is stored within

Kubernetes, allowing the administrator to roll back the

deployment to a previous revision.

CONTAINERCONTAINER CONTAINERCONTAINER

CONTAINERCONTAINER CONTAINERCONTAINER

Azure Container App Environment

Azure Container App 1

Revision 1

Container Container

Container Container

POD

POD

POD

POD

Revision 2

Revision 1

Revision 2

Azure Container App 2

020  INNOVATION

When an Azure Containerized App is deployed to Azure, the

app will be packaged as a Kubernetes deployment, leveraging

the benefits of a Kubernetes deployment. Each update to

the ACA will result in a new revision that can be rolled back if

needed.

For the ACA to allow ingress, a Service and an Ingress resource

are created as well in the underlaying Kubernetes cluster.

The Service resource is a static endpoint inside the cluster and

a mapping for Kubernetes to tie containers to specific ports.

This is done using the key/value pair in the selector. In the

example this is "app: nginx".

kind: Service
apiVersion: v1
metadata:
 name: nginx-service
spec:
 selector:
 app: nginx
 ports:
 - port: 80

The Ingress resource then describes how the incoming

traffic to the cluster is routed to the correct containers. In the

example, when incoming http traffic on port 80 is detected,

the traffic is forwarded to the service with the service name

"nginx-service". The nginx-service will then route the traffic to

all pods or deployments with the selector "ap: nginx".

apiVersion: extensions/v1beta1
kind: Ingress
metadata:
 name: nginx-ingress
 annotations: ingress.kubernetes.io/rewrite-target: /
spec:
 rules:
 - http:
 paths:
 - path: /
 backend:
 serviceName: nginx-service
 servicePort: 80

The equivalent of all this heavy lifting is done behind the

screens when the following Bicep containerApp resource is

deployed to Azure.

resource containerApp 'Microsoft.Web/
containerapps@2021-03-01' = {
 name: nginx-example
 kind: 'containerapps'
 location: 'west-europe'
 properties: {
 kubeEnvironmentId: ‘xxxxxxxx’
 configuration: {
 secrets: secrets
 registries: []

 ingress: {
 'external':true
 'targetPort':80
 }
 }
 template: {
 containers: [
 {
 'name':'nginx'
 'image':'nginx:1.14.2'
 'command':[]
 'resources':{
 'cpu':'.25'
 'memory':'.5Gi'
 }
 }
]
 }
}

The template section in the Bicep example describes the

containers to be deployed (name: nginx). The configuration

section describes the equivalent of the Kubernetes service

(targetport: 80) and the Kubernetes ingress (external:

true).

Traffic splitting between revisions

Revisions in Container Apps allow us to split traffic between

revisions to roll out new functionality gradually to our users.

Traffic splitting is done by adding traffic rules, in which the

different revisions of the Container App get a different weight

(note: the sum of the weights must equal 100).

{
 ...
 "configuration": {
 "activeRevisionsMode": "multiple"
 "ingress": {
 "traffic": [
 {
 "revisionName": <NAME_OF_REVISION_1>,
 "weight": 95
 },
 {
 "revisionName": <NAME_OF_REVISION_2>,
 "weight": 5
 }
]
 }
 }
}

CONTAINERCONTAINER CONTAINERCONTAINER

CONTAINERCONTAINER CONTAINERCONTAINER

Azure Container App Environment

Azure Container App 1

Revision 1

Container Container

Container Container

POD

POD

POD

POD

Revision 2

Revision 1

Revision 2

Azure Container App 2

KUBERNETES

Ingress
Resource

Service
Resource

Deployment

95%

5%

XPRT. Magazine N°

12/2022

021

In order to use traffic splitting, the activeRevisionsMode of the

ContainerApp should be set to "multiple". If this mode is set

to "single", a new revision would cause other revisions to be

deactivated automatically.

Background workers in Azure Container Apps

Azure Container Apps bring the possibility to deploy "back-

ground" applications on Azure. These are applications that

do not expose public endpoints and which can run forever.

By using standard Kubernetes Event-driven Autoscaling (KEDA)

technologies, Azure Container Apps can scale up and down

based on the number of events needing to be processed.

The maximum number of replicas is set at 25 replicas. In most

cases, Azure Container Apps can scale back to 0 replicas when

they are idle.

Many KEDA scalers are available for a wide range of

technologies (such as AWS, GCP, Azure, Redis, etc).

Per Container App, the scaling metrics can be specified based

on a number of rules that are different for each technology.

In the example below, the container app will scale up gradually

to a maximum of 5 Replicas when the number of concurrent

Http Requests is 100.

{
 ...
 "resources": {
 ...
 "properties": {
 ...
 "template": {
 ...
 "scale": {
 "minReplicas": 0,
 "maxReplicas": 5,
 "rules": [{
 "name": "http-rule",
 "http": {
 "metadata": {
 "concurrentRequests": "100"
 }
 }
 }]
 }
 }
 }
 }
}

When you start working with Container Apps and KEDA

triggers, documentation on the trigger specification can be

found on the KEDA website (https://keda.sh).

The KEDA documentation shows code examples in YAML,

while the Container Apps ARM template is in JSON. As you

transform examples from KEDA for your needs, make sure

to switch property names from kebab casing (everything

in lowercase, with dashes between words) to camel casing

(everything lowercase, all words after the first word start with

uppercase).

Microservices using Dapr in Azure Container Apps

To make different components in the microservice landscape

work together, ACA offers Dapr support out-of-the-box, by

setting a configuration value to true. From there, on each

app can use all the features of Dapr such as service location,

pub/sub messaging, or distributed tracing.

Dapr is an open source project started a few years ago in

the CTO office of Azure and in 2021 was donated to the

CNCF Foundation and is now a CNCF Incubation project1.

Dapr stands for "Distributed APplication Runtime" and helps

developers focus more on their applications instead of

knowing everything about the network, storage, monitoring

tools, etc.

Dapr creates an abstraction for developers, so they only

need one set of APIs to call other services, store state, or

send messages. We wrote an article about Dapr in XPRT

Magazine #102 and there are loads of information on the

Dapr.io website.

Dapr works through a sidecar architecture. Azure Container

apps make it possible by just checking a box to enable these

sidecar containers to your Azure Container app without

needing to setup anything yourself. By enabling this feature

for your app, you can immediately use all the features Dapr

provides.

Adding this feature again proves that Azure Container

Apps chose an opinionated way of building containerized

Microservice applications, although the use of Dapr is

completely optional.

Azure Container Apps compared to other Container
hosting options in Azure
With all the computing solutions Microsoft Azure is offering, it

can be hard to choose the right one. When should you choose

Functions, Web Apps, Container Instances, Kubernetes, or

Container Apps? In this section we will help you make the

choice.

1	 https://landscape.cncf.io/serverless?selected=dapr
2	 https://pages.xpirit.com/magazine10

CONTAINERCONTAINER CONTAINERCONTAINER

CONTAINERCONTAINER CONTAINERCONTAINER

Azure Container App Environment

Azure Container App 1

Revision 1

Container Container

Container Container

POD

POD

POD

POD

Revision 2

Revision 1

Revision 2

Azure Container App 2

https://keda.sh

022  INNOVATION

Azure Container Instances

Azure container Instances are the simplest way to run a

container in Azure. This is great for running certain processes

that are not a web application or background worker because

Azure Web Apps and Azure Functions offer more functionality

in those scenarios. For other applications that are just a

single container, Azure Container Instances is a great fit.

Another downside of Azure container Instances is they do not

have the ability to scale down to 0 instances, so you always

have a certain cost.

Azure Function Apps

Function apps are serverless applications that run based on

triggers such as http requests, timers or messages in a queue.

Azure Functions need the least amount of configuration of

infrastructure so you can focus on business logic. For smaller

applications or processing jobs this is the perfect solution.

The major downside of functions can be its "cold starts",

where processing a first request after being idle can take a

while. Because of that, we would not recommend it for APIs

or hosting user facing web applications.

Azure Web Apps

Azure Web apps are the go-to solution for basic web

applications or API's. As a PaaS solution, configuration is

quite simple. There is no built-in support for multi region, so

that must be managed by you outside of Azure Web Apps.

Azure Web Apps also supports running containers and can

be a great combination for front ends combined with workers

as Function apps or container instances.

Azure Container Apps

ACA can be seen as a "Kubernetes To Go" solution, in which

the developer can use a large amount of the power of

Kubernetes without the hassle of maintaining a cluster.

However, not all Kubernetes functionality is available for the

user. An ideal scenario would be the containerization of

microservices or any background process with fluctuating load

peaks by using KEDA auto scalers. Having a full application in

Azure Container apps in the future could combine the best

of both worlds comparing it to the features that Kubernetes

brings versus the simplicity of the combination of Azure Web

Apps & Azure Functions.

Azure Kubernetes Service

AKS is the Kubernetes PAAS offering by Microsoft, in which

Microsoft maintains the underlying cluster technologies

and virtual machines. This does not mean it does not need

maintenance. User management, ingress & egress routing,

networking, security, and resource allocations are all things

that have to be taken into account by you when using AKS.

The learning curve can be steep to start working with

Kubernetes, but it does offer a stack that can run almost

any application in any technology stack. Combining that,

along with scaling and self-healing / auto recovery services

Kubernetes provides, makes this is a great option for

organizations that want to host business critical

applications.

XPRT. Magazine N°

12/2022

023

3	� https://github.com/servicemeshinterface/smi-spec/blob/main/apis/traffic-split/v1alpha4/traffic-split.md

Are Azure Container Apps the future of microservices
on Azure?
Azure container Apps (ACA) is currently in public preview.

It was announced at Ignite near the end of 2021 and still has

some time to go before it will become Generally available

(GA).

Since we thrive by the "you build it, you run it" mantra and love

building microservice architectures, we're often in a love/hate

relationship with Kubernetes. It has so many good features, but

they come at a price of added complexity that development

teams often can not grasp. Therefore, we love the concept

of Azure Container Apps which brings a lot of these features

without the complexity. However, Azure Container apps in

its current state does have some flaws. We hope these would

get solved soon and some of them are already on Microsoft's

roadmap.

Some major improvements we would like to see?
Managed Identities

Managed Identities are the way to connect running services

to other Azure resources such as databases or queues.

At this moment Managed Identities are not supported yet

but Microsoft announced this will be available before GA.

Investigating running containers

At this moment the only way to inspect running containers in

ACA is through the logging in Log analytics. Microsoft already

announced that they are working on a way to improve this.

We have the hope this will make investigating issues during

development will be a lot easier if that is possible.

Advanced traffic shaping

The current revisions within ACA will allow you to shape traffic

to each revision. The only way to do this is by setting a certain

% of the traffic towards it. We think this is a nice idea but in

practice almost nobody uses it this way. It would be a lot

better if we could shape the traffic in more advanced ways like

sending traffic with certain http request headers to 1 revision

or the other or other options all defined in the SMI-Spec3.

Regional failovers

Azure Container apps currently have no options for regional

failovers when there is an outage. One of the benefits of

Kubernetes is you can have a cluster expand over multiple

regions and it can handle failure of the compute in a zone or

region. You could deploy the same ACA in 2 regions and put

an Azure Frontdoor in front of them to direct the traffic, but it

would be nice to have this built into the service especially in

countries that focus on 1 region. ACA does automatically

deploy to multiple availability zones for high availability so

that's a good start.

Limited hardware configuration options

When creating Container Apps, you can allocate CPU and

memory resources to them. Currently there are only options

ranging from 0.25 CPU cores and 0.5Gi memory to 2 CPU and

4Gi memory. We think this should be more flexible for apps

that are not heavy on the CPU but do need more memory or

the other way around.

The Future of hosting microservices in Azure?
Azure Container Apps is still in preview. There are a lot of

improvements already underway. Time will tell. We are

enthusiastic about the movement to a more serverless way of

running a Kubernetes-like environment for our microservices.

Azure Container Apps is a big step into the right direction.

As of this writing, there are just a few features missing that

would prevent us from using this in production, such as the

lack managed identity. We do believe, if these would be

added, this could become a dominant platform for hosting

containerized workloads, especially for microservice based

applications.  

Geert van der Cruijsen
Trainer, Digital Kickstarter, Enabler
for companies to embrace DevOps,
Cloud & improve their engineering
culture

xpirit.com/geert

Bas van de Sande
Azure Coding Architect, Consultant,
Integrator

xpirit.com/bas

https://xpirit.com/team/geert-van-der-cruijsen/
https://xpirit.com/team/bas-van-de-sande/
https://www.github.com/geertvdc
https://www.linkedin.com/in/geertvandercruijsen
https://www.linkedin.com/in/basvandesande
https://www.twitter.com/geertvdc
https://www.twitter.com/@basvandesande

