
050 DEVELOPMENT

Customizing
Codespaces

You've probably had this situation at least once on your career: you join a new team
and it takes you at least 10 days to finally get the build to succeed on your local machine,
the tests to pass, the application to launch without issues, and for the debugger to work.

There's a document somewhere or in the projects wiki with a lot of steps, and the
last person who walked through it did so 9 months ago. Situations like this cost

precious time and are a big source of frustration.

Author Jesse Houwing

Some companies solve this by having you work on a Virtual

Machine, either locally on Hyper-V or remotely in a datacentre

or the cloud. This solves quite a few problems, but the cost is

often prohibitive, and I've personally never liked having to work

inside a remote desktop, often on a machine that was shared

with others, while my own desktop has twice the power.

GitHub Codespaces provides a solution for many of these

issues.

What is Codespaces
For most people Codespaces can be described as Visual

Studio Code in the browser. Yet, it's much more. It's a cloud-

based container platform for developers to run their complete

development environment.

When you launch Codespaces from an enabled repository or

organization, by default it launches a version of Visual Studio

Code with all the latest developer tools pre-installed for just

about every popular programming language. And developers

can write their code, run their tests, and even run and debug

their application, inside the browser!

And while Codespaces runs in the cloud, your editor "runs"

inside of your browser or inside of a local instance of Visual

Studio Code.

Code Spaces are hosted in Azure and Visual Studio Code

uses Remote Containers1 to connect. All changes made to

the Codespace's filesystem are automatically captured.

Even when your Codespace is paused, it will resume right

where you left off.

Interesting use-cases
In the past few months, we have used Codespaces to deliver

online interactive workshops where participants could get

started with new technology and tools they had never used

before without installing anything to their local laptops.

This greatly simplified the preparations for the workshop

and completely took away the need for pre-provisioned

workstations.

We’ve configured Codespaces for internal projects so that all

it takes for a developer to contribute to the project is to start

the Codespace and wait a few seconds for the Codespace to

start. From this point forward, they can change the code, run

the tests, and run a local instance without having to configure

anything locally and without any interference with any of their

ongoing projects.

I’m personally considering adding a Codespace configuration

to most of my open-source projects to make it much easier

for people to contribute.

We plan to leverage Codespaces for the upcoming Global

DevOps Bootcamp2 so that every participant has access to a

fast and pre-configured IDE in the cloud regardless of their

own hardware and circumstances, hopefully enabling many

more people to participate in the event.

1 Developing inside a Container using Visual Studio Code Remote Development
2 https://globaldevopsbootcamp.com/

 Smooth Delivery

https://code.visualstudio.com/docs/remote/containers
https://globaldevopsbootcamp.com/

051

XPRT. Magazine N°

12/2022

Getting Started
To start using Codespaces, you don't need to know how

to create your own image. There is a large list of starter

containers available, and the default container has tools for

just about every popular programming language pre-installed.

Just click the "New Codespace" button in your repository to

open the repository in a new instance of Visual Studio Code

inside your browser.

Figure 1. Creating a new Codespace

While the default image is convenient, it’s also a bit big and

probably has many tools installed you’re unlikely to ever use.

To pick one of the other available images, choose the

"Add Development Container Configuration Files…" from the

command palette.

Figure 2. Add Development Container Configuration Files...

And choose the container image you want to use. When in

doubt, pick the "GitHub Codespaces (Default)". A complete

overview of all the images and what’s installed on them can

be found on GitHub3.

Figure 3. Choose the container image matching your environment

Visual Studio Code will add several files to your repository

and then prompts you to rebuild the Codespace:

Note: If you've missed the prompt, you can always manually

trigger a rebuild from the command palette (Ctrl+Shift+P).

This can also be useful when you want to make multiple

changes and then rebuild the Codespace.

You'll see a new folder in your repository containing these new

files: .devcontainer/devcontainer.json and .devcontainer/

DockerFile. These files are used to store most of the settings

of your Codespace.

Anatomy of a Codespace
The configuration of your Codespace is stored in several

places. You've already seen the first two in the .devcontainer

folder. But there are more. Let's go over them to see what they

are:

.devcontainer/devcontainer.json

The devcontainer.json is the main configuration file for your

Codespace. It contains environment variables, extensions,

docker volume mounts and a few other settings. It also points

to the container image used to run your development

container. The default points to the DockerFile in the same

directory, but you can also reference any image from a

docker repository of your choice.

The devcontainer.json can also be used to run one of more

commands after visual studio code has launched, at this point

your git repository contents will also be available.

.devcontainer/DockerFile

The DockerFile is used to select the base image and to

optionally install additional tools into your container.

By default, it's a simple pointer to the image you selected

when you had Visual Studio Code add the Development

Container Configuration Files to your repository.

Your GitHub profile

Additional settings, such as themes, keyboard bindings,

snippets and globally installed extensions can be synced

with your GitHub profile into your Codespace by turning

on Settings Sync4.

3 vscode-dev-containers/containers at main · microsoft/vscode-dev-containers · GitHub
4 https://code.visualstudio.com/docs/editor/settings-sync

https://github.com/microsoft/vscode-dev-containers/tree/main/containers
https://code.visualstudio.com/docs/editor/settings-sync

052 DEVELOPMENT

Codespaces will ask what settings to synchronize and will ask

what to do in case there are conflicting settings:

Some customizations, like keyboard bindings, can only be

configured through Settings Sync or through Visual Studio

Code extensions.

Your dotfiles repository

In your personal GitHub settings, you can configure a repo-

sitory containing your Linux dotfiles5. These can be used to

configure your default shell, your preferred editor, and many

other settings of your Linux user profile.

Codespaces Secrets

You may need to access other resources from your Codes-

pace, such as a GitHub Container Registry, Cloud resources

etc. To prevent accidentally committing these secrets to your

repository it’s recommended to not store these credentials

on the filesystem. Instead, store them in Codespaces Secrets.

When a Codespace starts, there secrets are made available as

environment variables.

Secrets can be stored on multiple levels:

 Repository (most specific)

 User Settings

 Organization Settings (least specific)

The most specific level will be used by your Codespace.

Note: Whenever a secret is updated, you must rebuild

your Codespace for these changes to take effect.

Unfortunately, there is no indication this is required from

inside your Codespace.

Note: You can’t store secrets with a key that stats with

GITHUB_. Which is unfortunate since some tools expect that.

In that case you’ll need to copy the value from a different

name to the reserved name after the Codespace has started.

There are special secrets to allow access to private docker

repositories6. These must be named:

 ***_CONTAINER_REGISTRY_PASSWORD

 ***_CONTAINER_REGISTRY_SERVER

 ***_CONTAINER_REGISTRY_USERNAME

Where *** is a custom label to identify the container registry.

Common scenario's
The most common reason to need to customize your own

Codespace, is probably the need to install additional tools that

are required for your development process or changing the

set of installed extensions.Every time you make changes,

you can immediately test them by rebuilding your Codespace.

When you are satisfied with your changes, commit your

changes to the repository to persist them and to share them

with the world.

Installing additional tools

While the default Codespace container has many things

installed, you may need to add something extra to it. Either a

custom-built tool, or something that requires a license to run.

You can add these by editing the DockerFile in the

.devcontainer folder.

FROM mcr.microsoft.com/vscode/devcontainers/

universal:1-focal

USER root

RUN apt-get update

USER Codespace

RUN az extension add --name azure-devops

You can run commands at the container lever (USER root)

or at the user level (USER Codespace).

Adding extensions

The list of extensions to install is stored in the .devcontainer.

json. You can manually add extensions to the list and then

rebuild the your Codespace.

Figure 4. Manually add an extension to the devcontainer.json

5 https://docs.github.com/en/codespaces/customizing-your-codespace/personalizing-codespaces-for-your-account#dotfiles
6 https://docs.github.com/en/codespaces/codespaces-reference/allowing-your-codespace-to-access-a-private-image-registry

https://docs.github.com/en/codespaces/customizing-your-codespace/personalizing-codespaces-for-your-account#dotfiles
https://docs.github.com/en/codespaces/codespaces-reference/allowing-your-codespace-to-access-a-private-image-registry

053

XPRT. Magazine N°

12/2022

But there is an easier way to achieve this. When you're

inside your Codespace, you can add the extension from

the Extensions Marketplace:

Figure 5. Add an extension through the Extension Marketplace

Find the extension you need, then add it to the .devcontainer.

json from the cogwheel menu.

Caching containers inside the Codespace

One of the great advantages of Codespaces is that you can

get started on a project quickly with the click of a button.

Once the Codespace has started, you can pull additional

images, so they’re cached locally:

{

 "postCreateCommand": "docker pull ghcr.io/

jessehouwing/mycustom-cli:latest -& --. "

}

To pull the image from a private repository add the previously

mentioned --*_CONTAINER_REGISTRY secrets.

Storing the Codespace container in GitHub Container

Registry

It may not be desirable to build your container from scratch

each time it's started up and you may not want to store the

container in a publicly accessible location. In that case you can

store your container in GitHub Container Registry and grant

access to Codespaces.

First build and tag your container image:

> docker build .

[+] Building 0.2s (6/6) FINISHED

 -> [internal] load build definition from Dockerfile 0.1s

 -> -> transferring dockerfile: 162B 0.0s

 -> [internal] load .dockerignore 0.1s

 -> -> transferring context: 2B 0.0s

 -> [internal] load metadata for mcr.microsoft.com/

vscode/devcontainers/universal:1-linux 0.0s

 -> [1/2] FROM mcr.microsoft.com/vscode/devcontainers/

universal:1-linux 0.0s

 -> CACHED [2/2] RUN az extension add --name

azure-devops 0.0s

 -> exporting to image 0.1s

 -> -> exporting layers 0.0s

 -> -> writing image sha256:aa1d12f58610a60d4ee53b

7dfc06b2b5a9581f5e26de19931deb61c3b66b120f 0.0s

054 DEVELOPMENT

Tag and publish the image to GitHub Container Registry:

> docker tag aa1d12f58610a60d4ee53b7dfc06b2b5a9581f5e

26de19931deb61c3b66b120f ghcr.io/jessehouwing/

Codespaces-demo:latest

> docker push ghcr.io/jessehouwing/Codespaces-demo:latest

The push refers to repository [ghcr.io/jessehouwing/

Codespaces-demo]

......

latest: digest: sha256:d928fbe90f267882d4d4de4194015e

ef06f5c88a045f3d9d4334aae0ea104612 size: 4538

Then navigate to the package settings for the container image

you just pushed and grant access to GitHub Codespaces:

Figure 6 Find the newly published Codespace container and open the

Package Settings

Grant the repository you want to launch this Codespace image

from access to this package:

Figure 7. Manage Codespace access to add the repository

Now update the DockerFile in the repository to use this

image:

FROM ghcr.io/jessehouwing/Codespaces-demo:latest

And rebuild your Codespace.

Beyond extending the base image
Your requirements for the Codespace image may go beyond

the standard images, maybe you need a different Linux distro,

standard libraries, a specific kernel version etc. In that case

you can also build a Codespace from scratch. A nice getting

started point could be to take the Codespaces default

container7 and either re-use the elements you need or use

them as inspiration for your own image.

To start customizing the image copy the contents of the

.devcontainer folder of one of the standard images and

replace the DockerFile with the base.DockerFile. You’ll find

all the scripts used to install the different toolsets in the

library-scripts folder.

Either commit the .devcontainer folder and its contents

directly to your repository or build the container and publish

it to a container registry as described above.

Figure 8. Take the full contents of a Codespace image to customize it ever

further

Summarizing
Codespaces enables people teams worldwide to contribute to

GitHub. It drastically reduces the time needed for anyone to

open a project and contribute their changes.

Even when the standard options won’t fulfill your needs, it’s

easy to extend and change what is installed and updates can

be rolled out to your team effortlessly.

7 https://github.com/microsoft/vscode-dev-containers/tree/main/containers/codespaces-linux/.devcontainer

Jesse Houwing
Trainer, coach, tinkerer

xpirit.com/jesse

https://github.com/microsoft/vscode-dev-containers/tree/main/containers/codespaces-linux/.devcontainer
https://xpirit.com/team/jesse-houwing/
https://www.github.com/jessehouwing
https://www.linkedin.com/in/jessehouwing
https://www.twitter.com/jessehouwing

